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ABSTRACT: 

 
 This paper presents a study that aims at applying, comparing and characterizing a proven method for 

hyperspectral land use classification that is currently integrated in two different remote sensing software 

packages. Recently a great deal of advances in the Geomatica Hyperspectral Analysis Package (HAP) has 

been made. The Spectral Angle Mapper (SAM) algorithm was used in both Geomatica and ENVI for this 

study and a hyperspectral dataset from the European sensor CHRIS onboard the platform PROBA-1 

served as a test case. The study showed that, despite of many differences in the workflow of the two 

software packages, the two land use classification results of SAM turned out to be identical. 

 

 

1. Introduction 

The objective of this paper lies in a comparison 

of the Spectral Angle Mapper (SAM) 

classification method which is currently 

implemented in both the Geomatica [Geomatica, 

2005] and the Environment for Visualizing 

Images (ENVI) [ENVI, 2006] software 

packages. The SAM algorithm permits rapid 

classification and mapping of the spectral 

similarity of image spectra to reference spectra 

[Kruse et al., 1993], however, its functionality is 

not the main focus of this paper. We concentrate 

on a) the assessment of the data processing 

environment (classification workflow tools) 

offered to the user by the two software packages 

in order to perform spectral angle mapping and 

b) the subsequent investigation of the 

classification result.  

2. Datasets and Methods 

2.1 Study area 

An intensively used agricultural area 

(Vordemwald, 7°53’E, 47°16’N) located on the 

Swiss Plateau in central Switzerland is used as a 

testsite in this study. The lower parts of the 

testsite are dominated by agricultural fields and 

the hilltops mainly consist of mixed forests 

(elevations up to 700 m a.s.l.). Agriculture 

concentrates on barley, wheat, maize, sugar beet 

and pasture land. The Vordemwald testsite has 

been widely used in various studies that deal 

with an improved estimation of ecosystem 

variables from imaging spectroscopy data 

[Huber et al., 2008, Kneubühler et al, 2008]. 

2.2 Data  

Several multiangular CHRIS/PROBA datasets 

were acquired over the testsite Vordemwald on 

eight different dates between 26 May 2005 and 

22 September 2005 [Kneubühler et al., 2006]. 

Out of these datasets, the nadir image of a 

dataset acquired on 17 August 2005 was chosen 

to be used in this study. Geometric and 

atmospheric correction of the dataset were 

performed following an approach described by  

Kneubühler et al. [2005]. 

During the 2005 growing season, extensive 

ground truth data collections in support of the 

CHRIS data takes were performed. In addition, a 

Leica Geosystems Airborne Digital Scanner 

(ADS40) [Sandau, 2005] dataset of the test area, 

acquired on 17 August 2005 in parallel to the 

CHRIS data takes was available as an additional 

source of ground truth. ADS40 datasets offer 

very high spatial resolution (25cm) and can 

therefore be used to visually locate individual 

fields belonging to different land use classes. As 

a consequence, a sufficient amount of training 

samples could be defined in order to make the 

subsequent classification as accurate as possible. 

2.3 Endmember Selection and  

      Classification 

The SAM algorithm, being implemented in both 

Geomatica and ENVI, was applied, compared 

and characterized in the respective software 



 

packages using the CHRIS/PROBA nadir image 

dataset of 17 August 2005. SAM is designed to 

classify hyperspectral image data using a set of 

reference spectra that define the classes [ENVI 

Help, 2006]. The land use classes were defined 

on the basis of the collected ground truth data 

(see Tab. 1).  

 
Land Use Class Ascertainment 

Abbreviation 

Maize M 

Stubble Field (harvested, 

stramineous) 

S2 

Stubble Field (harvested, 

bare) 

S3 

Stubble Field (seeded, 

partly green) 

S4 

Harvested Field A1 

Seeded Field A2 

Ploughed Field A3 

Pasture Land We 

Grassland with trefoil Wi 

Alfalfa L 

Grassland without trefoil GS 

Sugar Beet Z 

Table 1: Land use classes as available from 

ground truth data.  

 

The choice of adequate endmembers (reference 

spectra) is of major importance to obtain 

accurate classification results. Since the 

CHRIS/PROBA dataset has a spatial resolution 

of 18 meters, some of the sampled fields were 

not large enough to be taken into consideration 

because they mainly consist of mixed pixels. 

 In addition, several land use classes defined 

from ground truth data turned out to be 

spectrally not separable (e.g., the three Stubble 

Field classes (S2, S3 and S3) and the Harvested 

Field class (A1)). They had to be merged into 

one single class named Bare Fields. The 

respective classes all consist of very sparse 

vegetation due to harvesting and ploughing, 

which made their spectra unseparable from each 

other. For three other classes (Alfalfa (L), 

Seeded Field (A2) and Ploughed Field (A3)) the 

samples identified in the CHRIS/PROBA image 

contained mainly mixed pixels. Therefore, these 

land use classes had to be excluded from the 

following classification step. The quality of the 

training samples of the remaining classes was 

satisfactory to be used as endmembers for the 

classification. Additional classes (e.g., clouds, 

water, urban areas, forest and shadow) were 

defined by visual means and by using the 

ADS40 dataset (verification samples). Tab. 2 

summarises the endmember classes used for 

SAM classification. 

 The same endmembers that were first defined 

for the classification in ENVI were also used in 

Geomatica. Thereby, possible differences in the 

implementation of the two programs could be 

found easier.  

  
 Endmembers classes for SAM classification 

Maize 

Bare Fields 

Pasture Land 

Grassland with trefoil 

Grassland without trefoil 

Sugar Beet 

Clouds 

Water 

Urban area 

Forest 

Shadow 

Table 2: Visually defined endmember classes for 

subsequent SAM classification.  

2.3.1 SAM Classification ENVI 

ENVI contains an application called the Spectral 

Hourglass Wizard (SHW) which guides the user 

step-by-step through the ENVI hourglass 

processing flow to find and map image spectral 

endmembers from hyperspectral data (see Fig. 

1).  

The SHW displays detailed instructions and 

useful information for each processing step. 



 

 
Figure 1: The ENVI Spectral Hourglass Wizard 

(SHW) [ENVI Help, 2006]. 

 

The first step in the hourglass processing flow 

deals with the Minimum Noise Fraction (MNF) 

determination. The MNF is used to describe the 

inherent dimensionality of imaging data, to 

segregate and equalize the noise in the data, and 

to reduce the computational requirements for 

subsequent processing [ENVI Help, 2006]. This 

processing step of the SHW is designed to 

provide a default calculation of the data 

dimensionality, but it is critical and scene 

dependent. It is therefore recommended to 

slightly overestimate the data dimensionality 

and add a few extra bands in order not to loose 

important information. Since the 

CHRIS/PROBA dataset used in this study 

consists of only 37 bands and the main objective 

of this work is to compare two software 

packages rather than to optimize the 

classification result, none of the 37 bands were 

left out for further processing. 

The second step of the hourglass processing 

flow contains functionalities to derive 

endmembers directly from the input data. The 

Spectral Analyst is explicitely designed to do so. 

However, it is also possible to enter the 

endmembers from another source such as a 

spectral library, an ASCII file, a statistics file or 

regions of interest (ROI). It is crucial that these 

files have the same data units and the same 

spectral scaling as the image data. For the 

classification of the CHRIS/PROBA image file 

the endmembers were derived from existing 

ground truth and imported from a regions of 

interest (ROI) file. Individual fields for the 

respective land use classes endmember 

determination were selected by considering 

whether their size was large enough to be 

identified and sampled in the CHRIS/PROBA 

dataset. By selecting such samples with the ROI 

tool, the problem of mixed pixels could be 

reduced. 

In a next step, the Pixel Purity Index (PPI) was 

calculated on the CHRIS/PROBA dataset. This 

was done in order to identify additional 

endmembers beside the ones already identified 

from the ground truth. To calculate the PPI, the 

user needs to specify the number of iterations. 

The SHW recommends 5000 iterations for a 

useful result. The resulting PPI plot shows the 

number of iterations and the cumulative number 

of pixels that have been found to be spectrally 

extreme. When the iterations are completed, a 

PPI image is created in which the value of each 

pixel corresponds to the number of times that 

pixel was recorded as spectrally extreme. The 

bright pixels in the PPI image denote potential 

endmembers. In this study, however, the PPI 

identified no new potential endmembers. It was 

therefore left out of the classification workflow. 

The SAM classification is the last step in the 

SHW. The SAM output consists of a 

classification image and a set of rule images 

which correspond to the spectral angle 

calculated between each image pixel and each 

endmember. One rule image is delivered for 

each endmember. The rule images are helpful if 

the SAM classification image does not show 

spatially coherent classes. They can then be 

examined individually by loading each rule 

image into a display window. The SHW 

automatically reverses the colour table and 

estimates a linear stretch of the image. The best 

matches are the small angles. To change the 

stretch maximum of the displayed rule image, 

the desired value can be entered in the Default 

Stretch Max text box. The ENVI Cursor 

Location Tool can be used to look at the SAM 

spectral angles for each pixel and identify a new 

SAM threshold if necessary [ENVI Help, 2006]. 

In this study, the threshold was set to 0.5 radian. 

The final panel of the ENVI SHW workflow is 

the Spectral Mapping Wizard Summary Report. 

This report contains a summary of each 



 

processing step made using the SHW and it also 

contains a list of the output files created.   

2.3.2 SAM Classification Geomatica 

Geomatica’s Hyperspectral Analysis Package 

(HAP) can be found under Technical References 

in the Geomatica Help. The HAP is designed for 

processing and analysing images acquired with 

airborne and satellite imaging spectrometers. 

However, in contrary to the SHW in ENVI, each 

processing step within the HAP is only 

described, rather than being implemented in a 

workflow. The HAP consists of individual 

PACE application programs, a set of 

visualization operations accessible through 

FOCUS and spectral library files. A possible 

workflow scheme of these individual parts is 

presented in Fig. 2.  

 

 
Figure 2: The Geomatica Hyperspectral 

Analysis Package (HAP) workflow for a SAM 

classification. 

 

The PACE application programs consist of 

different functionalities like Preprocessing, 

Atmospheric Correction, Local Analysis, 

Spectral Handling and Metadata I/O. The 

functionalities used in this study were 

Preprocessing, Local Analysis and Metadata 

I/O. 

Under the functionality Preprocessing, the tasks 

Sensor-related Calibration, Geometric 

Correction, and Noise Removal can be found. 

However, before applying any of these 

functions, the ENVI image file (BSQ) was 

converted into Geomatica/PCI format (PIX) 

using an integrated functionality of ENVI.  

In support of the image data, various metadata 

concerning the mission and the sensor need to be 

related to the image file. Importing metadata is 

important when working with Geomatica’s 

Hyperspectral Analysis Package because of the 

additional information about the dataset and the 

sensor that acquired the data. Such metadata 

needs to be attached to the image data to make 

the subsequent processing and analyzing more 

efficient or even possible. By using the 

functionality Metadata I/O (In/Out),  mission 

and sensor data can be imported or exported. 
The metadata has to be formatted as an 

Extensible Mark-up Language (XML) document 

in a text file. The XML document file must be in 

the same directory and have the same base name 

as the image file (PIX). The metadata is then 

read into the PIX file using the METAIN task.  

Since the CHRIS dataset was already 

geometrically and atmospherically corrected 

[Kneubühler et al., 2005], noise removal was the 

only task which may be further applied. 

Geomatica PACE offers several programs that 

can be used for noise removal. Thereof, two of 

them are of interest: Maximum Noise Fraction 

Noise Removal (MNFNR) and Maximum Noise 

Fraction Linear Transformation (MNFLT). 

These steps were, however, left out for the same 

reasons as in the previous ENVI classification 

workflow.  
The subsequent Local Analysis functionality 

consists of the three different programs 

ENDMEMB, SAM, and SPUNMIX (Spectral 

Unmixing).  

The ENDMEMB program supports the 

localisation of endmembers in the dataset and 

was not needed in this study since the 

endmembers were previously defined in ENVI 

with the help of ground truth data. The ROI 

classes from ENVI were imported into 

Geomatica to make sure the classifications 

performed in both programs were based on 

exactly the same sampled regions. Each ROI 

class was converted into a shapefile with an 

integrated function provided by the ENVI ROI 

tool. These shapefiles were then converted into 

bitmaps by the program POLY2BIT in 

Geomatica. POLY2BIT converts polygons into 

bitmaps, which are storage spaces for masks. To 

be able to use these endmembers (bitmaps) for a 

SAM classification, one must first extract the 



 

spectra of each endmember into a spectra file. 

This can be done by configuring the endmember 

data with the Spectra Extraction Configuration 

dialog box, which is found in Geomatica 

FOCUS under Analysis. Here, the input image 

file and the channels to work with must be 

specified. One can either select an existing 

channel or create a new one. In our case, a new 

channel was created. For such a channel, a 

Spectra Extraction dialog box appears, in which 

all the spectra from the bitmaps can be imported. 
When starting a Spectra Extraction 

Configuration with no open data in the FOCUS 

view, the dialog box will automatically create a 

new map area for this work. If the FOCUS view 

already contains data and the input data in the 

Spectra Extraction channel has the same 

georeferencing as the view data, a new 

hyperspectral metalayer is added to the existing 

FOCUS view data. In case the georeferencing 

between the FOCUS view data and the channel 

input data is incompatible, which was not the 

case here, a new area is added to the existing 

FOCUS view data. When the hyperspectral 

metalayer is configured, a Spectra Plot dialog 

box can be accessed, where the spectra from the 

Spectra Extraction dialog box mentioned above 

can be imported. These spectra can then be 

saved as a spectra file (.spl) which is needed for 

the SAM classification. During the Spectra 

Extraction Configuration, a hyperspectral 

metalayer is created in the files tree in FOCUS. 

A sub-menu can be accessed by right-clicking 

this meta-layer. In this sub-menu, commands 

like Spectra Extraction and the Spectra Plot are 

found. After running these two tasks, a sub-layer 

called Regions of Interest, which is attached to 

the hyperspectral meta-layer, appears. The 

Regions of Interest layer (ROI) contains the 

masks which were imported from the bitmaps. 

One can link the analysis between the image and 

the ROI layer and work with scatter plots or 

spectra plots. 

 The two programs SAM and SPUNMIX are 

based on different algorithms which classify 

hyperspectral image data. For this study, the 

SAM classification method was chosen. SAM 

computes the spectral angle between each band-

vector in a specified region of the input image 

(in this case the whole image) and each of the 

spectrum read from the spectra file. This angle is 

the amount of spectral similarity between the 

band-vector and the reference spectrum; the 

smaller the angle the greater the similarity 

[Geomatica Software, 2005]. All 37 bands of the 

CHRIS/PROBA dataset were used for the 

classification. The CHRIS spectral values are 

treated as band-vectors for the purpose of the 

angle computation. A classification channel 

indicates the input reference spectrum with 

which it has the smallest angle for each image 

pixel. The pixels are assigned to the NULL (0) 

class if the minimum spectral angle is greater 

than the threshold value. This threshold is 

optional and specifies the spectral angle in 

degrees (between 0 and 180). If this field is left 

open all pixels are assigned to the class 

corresponding to the smallest spectral angle, no 

matter how large that angle is. This method was 

not appropriate for the CHRIS/PROBA dataset, 

because many pixels were assigned to classes 

they do not belong to. In the end, the threshold 

value was empirically set to 30 degrees. 

2.3.3 Accuracy Assessment 

In order to statistically differentiate between the 

two classification results, accuracy assessments 

have to be performed. In Geomatica, an 

Accuracy Assessment task can be found in 

FOCUS in the Post Classification Analysis 

dialog box.  

The accuracy assessments determine the 

correctness of classified images. The measure of 

accuracy is the correlation between a standard 

that is assumed to be correct and an image 

classification of unknown quality. 

In this work, the ground truth data consist of 39 

verification samples which were set as vector 

layers in the image file. The verification samples 

are used as a standard for the accuracy 

assessments of the classifications performed in 

both ENVI and Geomatica. 

The training classes which were added to the 

classification by visual means (clouds, forest, 

shadow, water, and urban area) were excluded 

from the classified images prior to the accuracy 

assessments. This was done using the Geomatica 

Class Labelling, and Class Editing dialog boxes. 

These classes were excluded because they all 

contained samples which were set over large 

areas, which made it impossible to locate 

verification samples without overlapping the 

classification samples. The classification 

samples of these classes were set without the use 

of ground truth data and could therefore not be 

assumed to be correct with absolute certainty. 

The Geomatica Accuracy Assessment task 

produces an Accuracy Report which contains a 

Random Sample Listing, a Confusion Matrix and 

Accuracy Statistics.  



 

 3. Results and Discussion 

The classification result images in both ENVI 

and Geomatica show some overlapping between 

the different land use classes due to mixed 

pixels. These classes are mainly the ones with 

spectra very similar to each other. The 

overlapping is particularly obvious along the 

borders of the land use fields. Another reason 

for these overlapping effects is the choice of the 

threshold value for the spectral angle between 

each pixel and endmembers in the SAM 

classification. This angle was set to 0.5 radian in 

the SAM classification in ENVI and to 30 

degrees in Geomatica. The overlapping effects 

in both classification results are, however, 

identical. The classified images of ENVI and 

Geomatica are given in Fig. 3 and Fig. 4, 

respectively. 

 

 
Figure 3: ENVI SAM classification result. 

 

 
Figure 4: Geomatica SAM classification result. 

 

The accuracy assessment results confirm the 

observations from the classification result 

images. The overlapping effects can be observed 

in the Users’s and Producer’s Accuracy listings 

of the Accuracy Report in Tab. 3. All the 

statistical listings, however, are identical for 

both classification images (see Tab. 3).  

 

Class Producer’s 

Accuracy 

User’s 

Accuracy 

Cappa 

Statistic 

Maize 60.00% 100.00% 1.00 

Bare 

Fields 

80.00% 100.00% 1.00 

Pasture 

Land 

100.00% 50.00% 0.41 

Grassland 

with 

Trefoil 

57.14% 57.14% 0.48 

Grassland 

without 

Trefoil 

40.00% 100.00% 1.00 

Sugar 

Beet 

100.00% 50.00% 0.49 

Table 3: ENVI and Geomatica Accuracy 

Statistics, Overall Accuracy: 71.80%. 

 

The statistical measure Overall Accuracy is the 

percentage of correctly classified pixels in the 

classification images [Congalton and Green, 

1998]. The classifications made in ENVI and 

Geomatica both have an Overall Accuracy of 

71.80%. These results are satisfying, considering 

the difficulties of endmember selection due to 



 

CHRIS/PROBA’s spatial resolution and the 

heterogeneity of the dataset. 

The Producer’s Accuracy shows what 

percentage of a particular reference class was 

correctly classified [Congalton and Green, 

1998]. The accuracy for all of the reference 

classes in the two SAM classifications (ENVI 

and Geomatica) is identical. The accuracy 

values range between 40% and 100% in both 

classifications. In the case of Sugar Beet and 

Pasture Land, both classes have a Producers’s 

Accuracy of 100%. Bare Fields (80%) and 

Maize (60%) also have a relatively high 

accuracy, while Grassland with Trefoil (57.14%) 

and Grassland without Trefoil (40%) show low 

accuracy values. The accuracy values of these 

classes are low because they contain pixels 

which belong to other classes (errors of 

commission).  

The User’s Accuracy is calculated by dividing 

the number of correct pixels in a class by the 

total number of classified pixels in that class 

[Congalton and Green, 1998]. The Users’s 

Accuracy is also identical for all of the classified 

classes in the ENVI and Geomatica 

classifications in this study. The accuracy values 

are ranging from 50% to 100%. The values 

show what percentage of a certain class was 

correctly classified. Maize, Bare Fields and 

Grassland without Trefoil have an accuracy 

value of 100%. Pasture Land (50%), Grassland 

with Trefoil (57.14%) and Sugar Beet (50%) all 

show lower accuracy values. The pixels which 

are not identified by these classes are not taken 

into consideration by the process of User’s 

Accuracy determination.   

The Kappa Coefficient is a statistical measure of 

the agreement, beyond chance, between two 

maps [Congalton and Green, 1998]. The classes 

Maize, Bare Fields and Grassland without 

Trefoil all show a Kappa value of 1. Pasture 

Land (0.41), Grassland with Trefoil (0.48) and 

Sugar Beet (0.49) all show lower Kappa values, 

which indicates that these classes are not as 

accurate in the classification result as the other 

classes.  

5. Conclusions 

The SAM classification in ENVI and Geomatica 

showed identical results despite differences in 

the classification workflow tools. While the 

ENVI Spectral Hourglass Wizard (SHW) 

workflow is fully implemented into the software 

package, the Geomatica Hyperspectal Analysis 

Package workflow is only listed in a Help 

function. Both classification tools contain all the 

work steps required to perform a SAM 

classification, however, the ENVI Spectral 

Hourglass Wizard lies a step ahead because of 

the integrated workflow, which makes the 

classification procedure much easier and clearly 

arranged.  

The main difference in the two work flows was 

the missing functionality in Geomatica’s HAP to 

calculate a Pixel Purity Index (PPI). This step 

only exists in the ENVI SHW workflow. Since 

PPI was not applied to this study’s dataset, its 

absence from the HAP workflow was not a 

problem. If the PPI process is necessary, the 

function can be found in the Algorithm Library 

in Geomatica FOCUS. Another difference is 

Geomatica’s necessity to import metadata into 

the image file. This process is performed 

automatically in ENVI, and is therefore not 

found in the SHW. The Spectra Extraction 

dialog box in Geomatica denotes another 

difference among the two software package 

workflows. Using this box, the training area 

samples are imported and a new file with the 

spectra and regions of interest (ROI) is 

configured. In ENVI the training area samples 

can be defined as ROIs from the beginning on, 

which makes this step redundant. Finally, a 

major difference between the two workflows 

concerns the SAM spectral angle between each 

image pixel and endmembers, which has to be 

defined for the classification. In ENVI, this 

angle is defined in radian and in Geomatica in 

degree. In this study, the angles were chosen 

empirically. Although the used angles slightly 

differed from each other (0.5 radian (≈ 28.7°) in 

ENVI and 30 degrees in Geomatica) the 

resulting SAM classification images are 

identical.  

Concerning endmembers, their selection was 

performed in ENVI using the ROI tool. These 

endmembers were then imported into 

Geomatica. The possibility to do this work step 

in Geomatica is, however, also available. Once 

the endmembers are defined, one has to decide 

whether their spectra are of sufficient quality for 

classification. To find out if this is the case the 

user has to run a test classification, observe the 

result image and decide if the spectra represent 

their mixed components well. To be able to do 

this, some pre-knowledge of the composition of 

mixed materials in the picture elements are 

useful. Due to CHRIS/PROBA’s spatial 

resolution, the image pixels were often 

heterogeneous. This fact made the endmember 

selection difficult, since clear spectral separation 

of land use classes was challenging. Especially 



 

vegetation spectra were rather similar. Land use 

classes of very small areas in the 

CHRIS/PROBA had to be excluded from the 

classification. 

The classification results from both ENVI and 

Geomatica were compared to each other, both 

visually and by applying an accuracy 

assessment. Visual comparison reveiled no 

differences between the two classification 

results. The images showed similar overlapping 

effects along field boundaries at the same 

locations and the areas not affected by mixed 

pixels were also identical in both images. To be 

sure that these visual observations were correct, 

an accuracy assessment in Geomatica FOCUS 

was performed to statistically differentiate 

between the two classification results. These 

accuracy results confirmed the previous findings 

that the two classification results obtained by the 

ENVI and Geomatica workflows are identical.
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